Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [ n ] and Bob ends up with a set y ⊆ [ n ], such that ( x , y ) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω ( n ) communication even to get within statistical distance 1− β n of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω (√ n ) communication is required to get within some constant statistical distance ɛ > 0 of the uniform distribution over all pairs of disjoint sets of size √ n .more » « less
-
null (Ed.)We study the search problem class PPA_q defined as a modulo-q analog of the well-known polynomial parity argument class PPA introduced by Papadimitriou (JCSS 1994). Our first result shows that this class can be characterized in terms of PPA_p for prime p. Our main result is to establish that an explicit version of a search problem associated to the Chevalley - Warning theorem is complete for PPA_p for prime p. This problem is natural in that it does not explicitly involve circuits as part of the input. It is the first such complete problem for PPA_p when p ≥ 3. Finally we discuss connections between Chevalley-Warning theorem and the well-studied short integer solution problem and survey the structural properties of PPA_q.more » « less
-
Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with a set y ⊆ [n], such that (x, y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω(n) communication even to get within statistical distance 1 − β^n of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω(√n) communication is required to get within some constant statistical distance ε > 0 of the uniform distribution over all pairs of disjoint sets of size √n.more » « less
An official website of the United States government

Full Text Available